## polyangles.m ( File view )

• By yueqiaohuayuan 2014-11-17
• View(s)：3508
• Point(s)： 3
```			function angles = polyangles(x, y)
%POLYANGLES Computes internal polygon angles.
%   ANGLES = POLYANGLES(X, Y) computes the interior angles (in
%   degrees) of an arbitrary polygon whose vertices are given in
%   [X, Y], ordered in a clockwise manner.  The program eliminates
%   duplicate adjacent rows in [X Y], except that the first row may
%   equal the last, so that the polygon is closed.

%   Copyright 2002-2004 R. C. Gonzalez, R. E. Woods, & S. L. Eddins
%   Digital Image Processing Using MATLAB, Prentice-Hall, 2004
%   \$Revision: 1.6 \$  \$Date: 2003/11/21 14:44:06 \$

% Preliminaries.
[x y] = dupgone(x, y); % Eliminate duplicate vertices.
xy = [x(:) y(:)];
if isempty(xy)
% No vertices!
angles = zeros(0, 1);
return;
end
if size(xy, 1) == 1 | ~isequal(xy(1, :), xy(end, :))
% Close the polygon
xy(end + 1, :) = xy(1, :);
end

% Precompute some quantities.
d = diff(xy, 1);
v1 = -d(1:end, :);
v2 = [d(2:end, :); d(1, :)];
v1_dot_v2 = sum(v1 .* v2, 2);
mag_v1 = sqrt(sum(v1.^2, 2));
mag_v2 = sqrt(sum(v2.^2, 2));

% Protect against nearly duplicate vertices; output angle will be 90
% degrees for such cases. The "real" further protects against
% possible small imaginary angle components in those cases.
mag_v1(~mag_v1) = eps;
mag_v2(~mag_v2) = eps;
angles = real(acos(v1_dot_v2 ./ mag_v1 ./ mag_v2) * 180 / pi);

% The first angle computed was for the second vertex, and the
% last was for the first vertex. Scroll one position down to
% make the last vertex be the first.
angles = circshift(angles, [1, 0]);

% Now determine if any vertices are concave and adjust the angles
% accordingly.
sgn = convex_angle_test(xy);

% Any element of sgn that's -1 indicates that the angle is
% concave. The corresponding angles have to be subtracted
% from 360.
I = find(sgn == -1);
angles(I) = 360 - angles(I);

%-------------------------------------------------------------------%
function sgn = convex_angle_test(xy)
%   The rows of array xy are ordered vertices of a polygon. If the
%   kth angle is convex (>0 and <= 180 degress) then sgn(k) =
%   1. Otherwise sgn(k) = -1. This function assumes that the first
%   vertex in the list is convex, and that no other vertex has a
%   smaller value of x-coordinate. These two conditions are true in
%   the first vertex generated by the MPP algorithm. Also the
%   vertices are assumed to be ordered in a clockwise sequence, and
%   there can be no duplicate vertices.
%
%   The test is based on the fact that every convex vertex is on the
%   positive side of the line passing through the two vertices
%   immediately following each vertex being considered.  If a vertex
%   is concave then it lies on the negative side of the line joining
%   the next two vertices. This property is true also if positive and
%   negative are interchanged in the preceding two sentences.

% It is assumed that the polygon is closed.  If not, close it.
if size(xy, 1) == 1 | ~isequal(xy(1, :), xy(end, :))
xy(end + 1, :) = xy(1, :);
end

% Sign convention: sgn = 1 for convex vertices (i.e, interior angle > 0
% and <= 180 degrees), sgn = -1 for concave vertices.

% Extreme points to be used in the following loop.  A 1 is appended
% to perform the inner (dot) product with w, which is 1-by-3 (see
% below).
L = 10^25;
top_left = [-L, -L, 1];
top_right = [-L, L, 1];
bottom_left = [L, -L, 1];
bottom_right = [L, L, 1];

sgn = 1; % The first vertex is known to be convex.

% Start following the vertices.
for k = 2:length(xy) - 1
pfirst= xy(k - 1, :);
psecond = xy(k, :); % This is the point tested for convexity.
pthird = xy(k + 1, :);
% Get the coefficients of the line (polygon edge) passing
% through pfirst and psecond.
w = polyedge(pfirst, psecond);

% Establish the positive side of the line w1x + w2y + w3 = 0.
% The positive side of the line should be in the right side of the
% vector (psecond - pfirst).  deltax and deltay of this vector
% give the direction of travel. This establishes which of the
% extreme points (see above) should be on the + side. If that
% point is o
...
...
```
...
Expand＞ ＜Close

Point(s): 3

0 lines left, continue to read

## File list

Tips: You can preview the content of files by clicking file names^_^
Name Size Date
01.97 kB
Contents.m5.98 kB2012-02-29|09:51
average.m651.00 B2012-02-29|09:51
bayesgauss.m2.96 kB2012-02-29|09:51
bound2eight.m2.99 kB2012-02-29|09:51
bound2four.m2.42 kB2012-02-29|09:51
bound2im.m2.17 kB2012-02-29|09:51
boundaries.m5.64 kB2012-02-29|09:51
bsubsamp.m3.87 kB2012-02-29|09:51
changeclass.m592.00 B2012-02-29|09:51
colorseg.m2.37 kB2012-02-29|09:51
compare.m1.15 kB2012-02-29|09:51
connectpoly.m1.02 kB2012-02-29|09:51
conwaylaws.m799.00 B2012-02-29|09:51
covmatrix.m977.00 B2012-02-29|09:51
dftcorr.m687.00 B2012-02-29|09:51
dftfilt.m882.00 B2012-02-29|09:51
dftuv.m736.00 B2012-02-29|09:51
diameter.m6.47 kB2012-02-29|09:51
endpoints.m874.00 B2012-02-29|09:51
entropy.m1.00 kB2012-02-29|09:51
fchcode.m8.55 kB2012-02-29|09:51
frdescp.m1.42 kB2012-02-29|09:51
fwtcompare.m992.00 B2012-02-29|09:51
gmean.m447.00 B2012-02-29|09:51
gscale.m2.04 kB2012-02-29|09:51
histroi.m920.00 B2012-02-29|09:51
hough.m2.64 kB2012-02-29|09:51
houghlines.m2.82 kB2012-02-29|09:51
houghpeaks.m2.65 kB2012-02-29|09:51
houghpixels.m1.02 kB2012-02-29|09:51
hpfilter.m1.23 kB2012-02-29|09:51
hsi2rgb.m1.94 kB2012-02-29|09:51
huff2mat.m2.46 kB2012-02-29|09:51
huffman.m2.82 kB2012-02-29|09:51
ice.fig45.71 kB2012-02-29|09:51
ice.m26.30 kB2012-02-29|09:51
ice_stand_alone.m46.55 kB2012-02-29|09:51
ifrdescp.m1.38 kB2012-02-29|09:51
ifwtcompare.m1.12 kB2012-02-29|09:51
im2jpeg.m2.90 kB2012-02-29|09:51
im2jpeg2k.m3.97 kB2012-02-29|09:51
imnoise2.m4.20 kB2012-02-29|09:51
imnoise3.m2.12 kB2012-02-29|09:51
improd.m791.00 B2012-02-29|09:51
imratio.m1.30 kB2012-02-29|09:51
imstack2vectors.m1.83 kB2012-02-29|09:51
intline.m1.20 kB2012-02-29|09:51
intrans.m3.25 kB2012-02-29|09:51
invmoments.m3.24 kB2012-02-29|09:51
jpeg2im.m2.41 kB2012-02-29|09:51
jpeg2k2im.m1.90 kB2012-02-29|09:51
lpc2mat.m1.42 kB2012-02-29|09:51
lpfilter.m1.44 kB2012-02-29|09:51
mahalanobis.m1.97 kB2012-02-29|09:51
manualhist.m1.75 kB2012-02-29|09:51
mat2huff.m2.75 kB2012-02-29|09:51
mat2lpc.m1.28 kB2012-02-29|09:51
minperpoly.m7.15 kB2012-02-29|09:51
pixeldup.m950.00 B2012-02-29|09:51
polyangles.m6.14 kB2012-02-29|09:51
princomp.m2.88 kB2012-02-29|09:51
quantize.m1.33 kB2012-02-29|09:51
randvertex.m1.15 kB2012-02-29|09:51
regiongrow.m1.66 kB2012-02-29|09:51
rgb2hsi.m1.46 kB2012-02-29|09:51
rgbcube.m1.98 kB2012-02-29|09:51
signature.m4.45 kB2012-02-29|09:51
specxture.m2.57 kB2012-02-29|09:51
spfilt.m3.78 kB2012-02-29|09:51
splitmerge.m4.13 kB2012-02-29|09:51
statmoments.m1.72 kB2012-02-29|09:51
statxture.m1.55 kB2012-02-29|09:51
strsimilarity.m1.78 kB2012-02-29|09:51
subim.m713.00 B2012-02-29|09:51
twodsin.m1.04 kB2012-02-29|09:51
twomodegauss.m1.16 kB2012-02-29|09:51
unravel.dll7.00 kB2012-02-29|09:51
unravel.m967.00 B2012-02-29|09:51
unravel.mexaxp24.00 kB2012-02-29|09:51
unravel.mexglx18.97 kB2012-02-29|09:51
unravel.mexhpux12.00 kB2012-02-29|09:51
unravel.mexmac8.68 kB2012-02-29|09:51
unravel.mexrs62.71 kB2012-02-29|09:51
unravel.mexsg24.44 kB2012-02-29|09:51
unravel.mexsol8.54 kB2012-02-29|09:51
vistformfwd.m1.66 kB2012-02-29|09:51
wave2gray.m4.67 kB2012-02-29|09:51
waveback.m4.52 kB2012-02-29|09:51
wavecopy.m940.00 B2012-02-29|09:51
wavecut.m1.06 kB2012-02-29|09:51
wavefast.m4.14 kB2012-02-29|09:51
wavefilter.m4.77 kB2012-02-29|09:51
wavepaste.m1.04 kB2012-02-29|09:51
wavework.m3.45 kB2012-02-29|09:51
wavezero.m696.00 B2012-02-29|09:51
x2majoraxis.m3.59 kB2012-02-29|09:51
...
• Sent successfully!
• 冈萨雷斯数字图像处理
• 3 point

### polyangles.m (160.12 kB)

Need 3 point

Get point immediately by PayPal

More(Debit card / Credit card / PayPal Credit / Online Banking)

Submit your source codes. Get more point

Don't have an account？ Register now
Need any help?
Mail to: support@codeforge.com

### 切换到中文版？

CodeForge Chinese Version
CodeForge English Version

### ^_^"Oops ...

Sorry!This guy is mysterious, its blog hasn't been opened, try another, please!

### Warm tip!

Favorite by Ctrl+D